skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chinthaparthy, Lochan_Sai_Reddy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Increasing demands for cloud-based computing and storage, the Internet of Things and machine learning-based applications have necessitated the use of more eficient cooling technologies. Direct-to-chip liquid cooling using cold plates has proven to be one of the most effective methods to dissipate the high heat luxes of modern high-power CPUs and graphics processing units (GPU). While the published literature has well-documented research on the thermal aspects of direct liquid cooling, a detailed account of reliability degradation is missing. The present investigation provides an in-depth experimental analysis of the accelerated degradation of copper cold plates used in high-power direct-to-chip liquid cooling in data centers. 
    more » « less
  2. Data center cooling systems have undergone a major transformation in the persistent pursuit of better performance and lower energy use. Liquid cooling systems, particularly direct-to-chip systems, have emerged as a promising solution to address the increasing heat dissipation challenges. One critical component of such systems is the filtration mechanism, responsible for safeguarding the integrity and efficiency of the cooling process. These factors are pivotal in ensuring the reliable and sustainable operation of liquid cooling systems in high-demand applications, where electronic components continually push the boundaries of heat generation. This study undertakes a thorough examination of filters of different mesh size used in direct-to-chip liquid cooling systems. The research is multifaceted, encompassing the evaluation of filter performance, pressure drop characteristics, and long-term durability. The methodology employed in this research combines testing with a coolant distribution unit and rack setup to provide a holistic perspective on filter functionality. Findings from this study shed light on the key parameters that influence filter performance. Ultimately, the results of this research promise to contribute significantly to the advancement of direct-to-chip liquid cooling systems, facilitating the continued evolution of electronics in diverse fields, such as high-performance computing, data centers, and emerging technologies. With a focus on enhancing system reliability, efficiency, and sustainability, this study seeks to provide a valuable resource for engineers and researchers in the pursuit of effective cooling solutions for cutting-edge electronic applications. 
    more » « less